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Abstract
We discuss two main universal dynamic crossovers in a liquid that correspond to relaxation
times of 1 ps and 10−7–10−6 s. We introduce the concept of liquid elasticity length del. At room
temperature, del is several Å in water and increases to 0.01 mm in honey and 1 mm in tar. We
discuss that on temperature decrease, del = dm and del = L correspond to the two dynamic
crossovers, where dm is the medium-range order and L is system size. In this picture, the two
important changes in the dynamics of a system are defined by its fundamental lengths. The
second crossover defines all kinetic aspects of the glass transition, whereas the
‘thermodynamic’ glass transition is realized in the limit of infinite system size only. In this
picture, we also discuss the division of liquids into strong and fragile. One prediction of our
theory is the increase of viscosity with the size of macroscopic system, which we verify by
measuring the viscosity of honey.

1. Introduction

A conceptually simple phenomenon, freezing of liquid into
glass, has turned out to be one of the most difficult problems
in condensed matter physics, the problem of the glass
transition [1, 2]. Analysing the current state of the field,
Dyre recently suggested that the glass transition itself is not
a big mystery: it universally occurs in any liquid when its
relaxation time τ exceeds the time of experiment at the glass
transition temperature Tg [2]. The challenges lie above Tg:
explaining the physical origin of the most important anomalous
relaxation properties of a liquid in the glass transformation
range, the Vogel–Fulcher–Tammann (VFT) law and stretched-
exponential relaxation [1, 2]. To these, one can add the origin
of two universal dynamic crossovers.

If we consider the changes in dynamics in a liquid on
lowering the temperature, we find two dynamic crossovers.
The first crossover is at high temperature at liquid relaxation
time τ1 ≈ 1 ps, at which the dynamics changes from
exponential relaxation, q(t) ∝ exp(−t/τ), to stretched-
exponential relaxation, q(t) ∝ exp(−(t/τ)β), where q is
a relaxing quantity and 0 < β < 1. This crossover
is universal, i.e. is seen in many systems [3–8]. As the
temperature is lowered, we find another universal crossover
at τ2 = 10−7–10−6 s [9, 10]. This crossover also marks
the qualitative change in the system’s dynamics. A notable
manifestation of this change is the transition from the VFT

law to Arrhenius relaxation. Many other properties have been
found to show a crossover at τ2 as well [9–15]. The second
crossover was called the transition from the ‘liquid-like’ to the
‘solid-like’ behaviour [10]. Note that although the relaxation
time at the second crossover is much larger as compared to the
first one, it is still about nine to ten orders of magnitude smaller
than the relaxation time at the glass transition (≈103 s).

The physical origin of the two universal dynamic
crossovers is not known. Explaining it should form an
important part of a theory of the glass transition.

An important general question is what a theory of glass
transition should be based on. Previous theories identified
different variables which control the process of glass transition,
including entropy, volume, energy landscape and many
others [2]. Each variable implies a different mechanism of
glass transition. We believe that a successful glass transition
theory should discuss how the stress relaxation mechanism of
a liquid changes on lowering the temperature. This is because
a glass is different from a liquid by virtue of its ability to
support shear stress; hence, stress relaxation, or elasticity,
is the central physical property as far as glass transition is
concerned. This requirement for a glass transition theory
can now be strengthened by asking a theory to explain the
anomalous phenomena of the glass transition on the basis of
elastic properties of a liquid only, without invoking additional
ideas or mechanisms. This is the view that we adopt and
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Figure 1. Orowan’s example of a concordant local
rearrangement [16]. Solid and dashed lines around the shaded atoms
correspond to initial and final positions of a rearrangement,
respectively. The arrows show the direction of external stress.

explore in this paper: we seek to understand glass transition
solely on the basis of stress relaxation of a liquid.

In order to understand the origin of the two dynamic
crossovers, we begin the discussion by studying how stress
relaxation of a liquid changes on lowering the temperature. We
introduce the temperature-dependent liquid elasticity length,
which is the range of elastic interaction in a liquid. Several
Ångstroms at high temperature, this length grows with
relaxation time of the system, increasing sharply on lowering
the temperature. We propose that that the first and second
dynamic crossovers take place when this length becomes equal
to the values of the medium-range order and system size,
respectively. In this picture, we discuss how the second
dynamic crossover is related to the old question of whether
the glass transition is a thermodynamic or kinetic phenomenon.
The division of liquids into strong and fragile is also discussed.
Finally, we perform the experimental measurement of viscosity
at different values of liquid elasticity length to test the
prediction of our theory that viscosity increases with the size
of the macroscopic system.

2. Liquid elasticity length

In this section, we introduce the important concept of
liquid elasticity length, and discuss how it compares with
characteristic lengths in a disordered system. We first note
that no characteristic length scale is present in the usual elastic
theory of a solid: elastic strains and stresses continuously
decay as ∝1/r 2 and ∝1/r 3, respectively. On the other hand,
as we discuss below, a dynamically relaxing liquid does have a
length scale beyond which elastic interaction does not operate.

Let us consider relaxation in a liquid under, for example,
shear stress. Such a relaxation is the sequence of elementary
localized structural rearrangements, local relaxation events
(LREs). Because the divergence of the elastic field due to an
LRE is zero, an LRE is not accompanied by density changes of
the surrounding liquid, and can be viewed, in a simple model,

d

Figure 2. Illustration of the elastic interaction between local
relaxation events. This interaction takes place within the range del

from the central relaxing regions. Shaded and open circles represent
local relaxing regions inside and outside, respectively, the interaction
sphere.

as a pure shear event [2]. For the purpose of discussing the
interaction between LREs through their elastic fields, we can
therefore ignore the longitudinal component of the elastic field
due to an LRE and consider shear events. A typical shear
relaxation event is shown in figure 1 (the term ‘concordant’ in
the figure caption is not important here, and will be explained
in the next section).

A structural rearrangement, that accompanies an LRE,
produces elastic shear stress that can propagate through the
system. The important question is how this stress affects the
relaxation of other LREs in the system.

Let us consider how LREs interact elastically in some
detail, and discuss how the changes of stresses due to remote
shear LREs affect a given local relaxing region, shown in
the centre in figure 2. Relaxation of the central event
involves deformation of the ‘cage’ around the jumping atom
(see figure 1), and therefore depends on the stresses that
propagate from the remote LREs to the centre. A remote
shear LRE, similar to the one shown in figure 1, creates
elastic shear waves of different frequencies. Among these
frequencies, high-frequency waves are present, because the
deformation associated with an LRE creates a wave with a
length comparable to the interatomic separation (see figure 1),
and hence with a frequency on the order of the Debye
frequency. At high frequency, larger than the inverse of τ ,
a liquid can support shear stress just like a solid. Hence the
high-frequency shear waves from all remote LREs propagate
the stress and its variations to the central point. However, not
all of these affect the relaxation of the central LRE, but only
those that are located within the distance del = cτ from the
centre, where c is the speed of sound. This is because the
stresses that arrive at the centre from larger distances take a
time longer than τ to travel, during which a local event in the
centre already relaxes (the time between consecutive LREs is
given by τ ). After time τ a new LRE happens in its place or
nearby, and the process repeats.

del, therefore, captures the dynamic process of relaxation
in a liquid, and defines the maximal distance at which two shear
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Table 1. Approximate values of viscosity η, relaxation time τ and
liquid elasticity length del at room temperature.

Liquid η (Pa s) τ (s) del

Water, olive oil,
Ethanol, glycerol 10−3–1 10−13–10−11 1–1000 Å
Honey 10–102 10−9–10−8 1–10 μm
Tar 104 10−6 1 mm
Pitch 108 10−2 10 m

LREs elastically interact. For this reason, we call it the liquid
elasticity length.

Because c is on the order of a/τ0, where a is the
interatomic separation of about 1 Å and τ0 the oscillation
period, or the inverse of the Debye frequency (τ0 = 0.1 ps),
we find

del = cτ = τ

τ0
a. (1)

To illustrate the actual values of the introduced elasticity
length in real liquids at room temperature, we have calculated
del from equation (1) using the experimental values of viscosity
η and Maxwell relation η = τG∞, assuming G∞ ≈ 10 GPa
and c ≈ 1000 m s−1. The results are summarized in table 1.
Starting from 1–1000 Å in familiar liquids like water or olive
oil, del increases to 0.01 mm in honey and to 1 mm in very
viscous tar. In extremely viscous pitch, del = 10 m. An
interesting observation here is that for most familiar liquids, del

does not exceed their typical experimental sizes. The subject
of system size will be discussed in this section as well as
throughout this paper.

If V is the activation barrier for an LRE (V can be
temperature dependent), τ = τ0 exp(V/kT ), and increases
on lowering the temperature. According to equation (1), this
results in an increase of the range in which LREs elastically
interact.

Our main proposal in this paper is that the key to the
dynamic crossovers is the increase of del on lowering the
temperature, when del crosses two characteristic lengths in
a liquid. Recall that in a perfect crystal there are two
fundamental lengths, lattice constant a and system size L.
In a disordered system like a liquid, there is an additional
length dm, which corresponds to the medium-range order, and
is defined by local packing. dm is on the order of 10 Å,
the characteristic size of decay of structural correlations in a
disordered medium. dm can weakly depend on the substance
and external parameters (temperature, pressure).

On lowering the temperature, del crosses all three
fundamental lengths in a system. At high temperature, del is
on the order of interatomic distance a (see equation (1)). On
lowering the temperature, τ increases as τ = τ0 exp(V/kT ),
and del quickly increases to dm. Because dm is on the order
of 10 Å, we find from equation (1) that del = dm gives τ of
about 1 ps. This is the first dynamic crossover discussed above.
On lowering the temperature even further, equation (1) shows
that del increases to L. In liquid relaxation experiments, L is
typically 1–10 mm (see the discussion below). According to
equation (1), del = L gives τ = 10−7–10−6 s, the second
dynamic crossover. The two crossovers are illustrated in
figure 3.

Figure 3. Elasticity length del as a function of relaxation time. T1

and T2 correspond to two dynamic crossovers. Tg and T0 are glass
transition and VFT temperatures, respectively.

We propose that the physical reason for the two dynamic
crossovers is related to the two qualitative changes of the
relaxation mechanism in a liquid on lowering the temperature
when del reaches dm and L. A typical distance between
the neighbouring LREs is about 10 Å, or dm. At high
temperature, when del < dm, the elastic interaction between
LREs is absent, and LREs take place independently. When
del = dm, LREs start elastically interact, resulting in the first
dynamic crossover, which corresponds to the crossover from
independent to non-independent relaxation. On lowering the
temperature, del increases. In the temperature range which
gives dm < del < L, relaxation takes place in partially
‘elastic’ liquid, i.e. LREs elastically interact, but only in
the range given by del. Finally, when, on lowering the
temperature, del = L, all LREs in a system start interacting
with each other. This corresponds to the transition from
partially elastic to wholly elastic liquid, and gives the second
dynamic crossover. This process will be discussed below in
more detail.

Hence, del, introduced in this section, plays the central
role in our discussion. In the next section we introduce the
elastic feed-forward interaction mechanism between LREs.
The physical importance of del is that it sets the range of this
interaction.

3. Elastic feed-forward interaction mechanism

Some time ago, Orowan introduced ‘concordant’ local
rearrangement events to discuss creep phenomena [16]. A
concordant local rearrangement is accompanied by a strain
agreeing in direction with the applied external stress, and
reduces the energy and local stress (see figure 1). A discordant
rearrangement, on the other hand, increases the energy and
local stress. This has led to a general result that stress
relaxation by earlier concordant events leads to the increase of
stress on later relaxing regions in a system. Goldstein applied
the same argument to a viscous liquid [17]: consider a system
under external stress which is counterbalanced by stresses
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supported by local regions. When a local rearrangement to
a potential minimum, biased by the external stress, occurs
(a concordant event), this local region supports less stress
after the event than before; therefore, other local regions in
the system should support more stress after this event than
before [17].

Let us consider relaxation in a liquid induced by an
increment of external shear stress. As argued by Orowan
and Goldstein, because an external shear stress introduces
bias towards concordant shear relaxation events, which support
less shear stress after relaxation, later relaxing regions should
support more shear stress in order to counterbalance the
decrease. If �p is the corresponding increase of stress on a
currently relaxing region and n is the current number of LREs,
�p is a monotonically increasing function of n.

The increase of stress, �p, on a currently relaxing region
increases its activation barrier V . It has been argued that
V is given by the elastic shear energy of a surrounding
liquid [2, 18–20]. As discussed by Dyre et al [20], the energy
needed for an atom to escape its cage at the constant volume
is very large because of the strong short-range interatomic
repulsions, hence it is more energetically favourable for the
cage to expand, reducing the energy needed for escape.
Such an expansion results in the elastic deformation of the
surrounding liquid, hence the activation barrier is given by the
work of the elastic force needed to deform the liquid around an
LRE [20]. Because such a deformation does not result in the
volume change of the surrounding liquid (for the displacement
field u created by the expanding sphere, div(u) = 0), it
has been argued that V is given by the shear energy of the
surrounding liquid [20]. This result was confirmed by the
experimental data, showing that the activation barrier increases
with the shear energy [20].

Because, as discussed by Orowan and Goldstein, previous
LREs reduce stress in the direction ‘concordant’ to the external
stress (see figure 1), the increase of shear stress on later
rearranging regions consistently increases shear strain on them
in the same direction, increasing shear energy and therefore
V . The increase of V due to the additional stress �p, �V ,
is given by work

∫
�p dq . If qa is the characteristic activation

volume [20], �V = �pqa, and we find V = V0+qa�p, where
V0 is the high-temperature activation barrier.

Because �p is a monotonically increasing function of n
and V = V0 + qa�p, we find that V is also a monotonically
increasing function of n. This provides the elastic feed-forward
interaction mechanism between LREs [21], in that activation
barriers increase for later events. As discussed in the previous
section, the range in which this elastic interaction mechanism
operates is given by del.

We have recently shown that the two most important
signatures of the glass transformation range, stretched-
exponential relaxation and the VFT law, can be derived on the
basis of the feed-forward interaction. For details of calculation
the reader is referred to [21, 22]. Below we discuss how the
elastic feed-forward interaction mechanism gives rise to the
two dynamic crossovers on lowering the temperature when
del = dm and del = L.

4. Comment on cooperativity of relaxation

It is interesting to note the relationship between the elastic
interaction mechanism discussed in the last two sections and
‘cooperativity’ of molecular motion. Cooperativity, which is
absent at high temperature, but becomes operative in a liquid
at low temperature, has been discussed intensely in the area of
glass transition [2, 23, 24]. For example, the entropy theory,
as well as other approaches to the glass transition, assume the
existence of ‘cooperatively rearranging regions’, ‘domains’ or
‘clusters’ in a liquid (for review, see [23]), in which atoms
move in some concerted way that distinguishes these regions
from their surroundings. On lowering the temperature, the
size of this region can grow, but does not exceed several
nanometres [23]. The physical origin of this cooperativity
has not been understood, nor has the nature of the concerted
motion, and remains one of the central open questions in the
field of glass transition [2, 23, 24].

Here, we do not need to assume the existence of
cooperativity of relaxation as in the previous work [2, 23, 24].
In our discussion, the elastic interaction between LREs is
the necessary feature of relaxation that becomes operative in
a liquid on lowering the temperature: as discussed above,
this interaction is absent when del < dm, but becomes
operative when del > dm. Hence, in our picture, relaxation is
‘cooperative’ in a general sense that LREs are not independent,
but the origin of this cooperativity is the usual elastic
interaction. Consequently, instead of the size of a cooperatively
rearranging region discussed previously [2, 23], we operate
in terms of the range over which interactions are elastic in a
liquid. The important quantitative difference between the size
of a cooperatively rearranging region and our elasticity length
del is that the former does not exceed several nanometres [23],
whereas the latter becomes macroscopic above Tg: if τ (Tg) =
103 s, del = 1000 km at Tg, according to equation (1).

5. The first dynamic crossover

The elastic interaction between LREs, discussed in the
previous sections, sets the stage for clarifying the origin of the
two dynamic crossovers.

Because, as discussed above, del < dm at high
temperature, the elastic feed-forward interaction is absent,
and LREs do not interact. When LREs are independent, it
is easy to derive the expected high-temperature result that
relaxation is Debye (exponential) in time [21]. On the other
hand, when del � dm on lowering the temperature, the elastic
feed-forward interaction between LREs becomes operative.
We have recently shown that stretched-exponential relaxation
follows as a result [21]. Hence del = dm marks the crossover
from exponential to stretched-exponential relaxation.

According to equation (1), del = dm gives

τ1 = dm

a
τ0. (2)

Because τ0 = 0.1 ps and dm/a are roughly system and
temperature independent, equation (2) predicts that τ1 is a
universal parameter. This is consistent with experimental
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findings [3–8]. Because dm/a is on the order of 10, we find
from equation (2) that τ1 is about 1 ps, in good agreement with
the experimental value in the 1–2 ps range [3–8].

6. The second dynamic crossover

To discuss the second dynamic crossover, we first discuss how
V changes with del. To calculate V as a function of del, let us
consider relaxation induced by an increment of external shear
stress. It involves a finite number of LREs, and we consider,
for simplicity, the last LRE to relax to be in the centre of the
sphere of radius del (see figure 2). The stress on the central
rearranging region increases in order to counterbalance the
decreases of stresses due to the previous remote concordant
LREs. These LREs are located within the range of the feed-
forward interaction del (see figure 2). It is easy to see that
the increase of stress, �p, on the central region increases with
del: as del increases, this region needs to counterbalance the
reductions of stresses due to an increasing number of remote
concordant LREs. �p can be explicitly calculated as a function
of del. Joining the result with V = V0 + qa�p from section 3
gives [21, 22]

V = V0 + C ln

(
2del

d0

)

(3)

where d0 is the size of a local rearranging region and C depends
on microscopic parameters of the system.

We note here that in equation (3) V implicitly depends
on temperature through del. Using τ = τ0 exp(V/kT ) in
equation (1) and combining it with equation (3) gives the
explicit temperature dependence of V . As we have recently
shown, this gives the VFT law for the activation barrier
V = AT/(T − T0) and relaxation time τ = τ0 exp(A/(T −
T0)) [22]. Here, the super-Arrhenius behaviour is related to
the increase of the range of the feed-forward interaction, del:
as the temperature is lowered, more LREs are involved in the
elastic interaction with a currently relaxing event, increasing
its activation barrier.

We are now ready to discuss the second dynamic
crossover. According to equation (3), V increases with del

on lowering the temperature as long as del < L. When
del = L, all LREs in the system are involved in the feed-
forward interaction. Hence del = L marks the transition of
the system from being partially to wholly ‘elastic’, and should
manifest itself as a qualitative change in the liquid’s dynamics.
The important aspect of such a change directly follows from
equation (3): at del > L, V ∝ ln(L), and is temperature
independent. To be more precise, when del > L, further
decrease of temperature has a weaker effect on V , related to,
e.g., density increase, but not to the increase of del. As a result,
the system is expected to show a crossover to a more Arrhenius
behaviour. This will be discussed in more detail below.

Setting del = L gives, according to equation (1),

τ2 = L

a
τ0. (4)

Equation (3) predicts that, similar to τ1, τ2 is a universal
parameter, independent of temperature or system type. This is

consistent with experimental findings [9, 10, 12–15]. Typical
values of L used in the experiments are 1–10 mm, which
is dictated mostly by the experimental set-up. For example,
smaller system sizes can be associated with surface effects,
while larger system sizes can involve temperature gradients
and effects of final thermal conductivity. Furthermore,
fragile systems of larger size can not be supercooled without
crystallization. Using the range of L = 1–10 mm and τ0 =
0.1 ps, we find from equation (4) that τ2 = 10−7–10−6 s. This
is in good agreement with experimental results, which show
that for many studied materials τ2 = 10−7–10−6 s, although
exceptions have been noted [15]. Note that at the second
del = L crossover 1/τ2 has the meaning of the typical values
of eigenfrequencies of the system.

Experimentally, there is ample evidence for the second
dynamic crossover in many systems. Most direct evidence
comes from the sharp kink in the dielectric function [9]. The
crossover to the lower slope of relaxation time, with the effect
that the glass transition becomes retarded, is observed [11],
in agreement with the prediction from our picture. Other
experiments include NMR relaxation data, which detect a
similar dynamic crossover [12], the crossover in the relaxation
of cage sizes in the positron annihilation experiments [13] and
changes of non-ergodicity parameter [14].

It is interesting to ask what kind of room temperature
liquid has viscosity that corresponds to the second dynamic
crossover τ2 = 10−7–10−6 s. From table 1, we observe that τ2

corresponds to a viscosity of 103–104 Pa s. This is much larger
than the room temperature viscosity of familiar liquids like
water, ethanol, or olive oil, for which η is in the 10−3–1 Pa s
range, or honey (η = 10–102 Pa s). These examples show
that although the second crossover is long above the glass
transition, it corresponds to quite high values of viscosity.
From table 1 we find that very viscous tar (η = 104 Pa s)
has relaxation time close to τ2 and del = 1 mm, comparable
with typical experimental system sizes. This illustrates that
the second dynamic crossover del = L corresponds to a very
viscous medium like tar.

From the physical point of view, the results of this as
well as the previous section are interesting, in that we have
shown that there is a simple relationship between structure and
dynamics: the most important changes in the dynamics of a
disordered system are defined by its fundamental lengths only
(see equations (2) and (4)). This is a new general result, not
discussed before.

7. Is the glass transition a thermodynamic or kinetic
phenomenon?

In this section, we discuss how the second dynamic crossover
at del = L is related to the old debate about whether the
glass transition should be viewed as a thermodynamic or
kinetic phenomenon. As discussed in the previous section, the
increase of del on lowering the temperature gives the VFT law
for relaxation time, τ = τ0 exp(A/(T − T0)) [22]. Because τ

formally diverges at T0, several models have suggested that an
underlying phase transition can exist. However, the nature of
this transition and the second phase is not clear. This, together
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Figure 4. The effect of the elastic feed-forward interaction on the
activation barrier V . V increases from its high-temperature value at
the first dynamic crossover at temperature T1 to the second dynamic
crossover at T2. After the second crossover at del = L , V starts
saturating to a constant value depending on the system size L : the
larger L , the larger value of V can be achieved. For finite system
size, the divergence of relaxation time takes place at zero temperature
only. For the infinite system, V grows to infinity, resulting in the
divergence at the finite VFT temperature T0.

with the fact that no phase transition is seen when a liquid
forms a glass, continues to fuel the current debate [1, 2].

In our discussion, the debate related to the nature of the
glass transition is settled as follows. Because, according to
equation (1), del ∝ τ , we find that del ∝ exp(A/(T −
T0)). When T approaches T0, del diverges, and exceeds any
finite size of the system L. When d � L, all events in
the system participate in the elastic feed-forward interaction
mechanism, and there is no room for the increase of V by
way of increasing del. As a result, relaxation stops following
the VFT dependence, and tends to Arrhenius, pushing the
divergence to zero temperature. We therefore find that only the
truly infinite system L = ∞ does not have the second dynamic
crossover, and has the divergence of relaxation time at the finite
VFT temperature T0. This is illustrated in figure 4.

We note that in this picture, no dynamic crossover takes
place at Tg, consistent with the experimental observations.
According to equation (1), Tg = 103 s corresponds to del of
1000 km, which explains why the two dynamic crossovers
are seen long before Tg is reached (see figure 3). In
other words, the absence of a dynamic crossover in the
vicinity of Tg is due to the imbalance between our typical
experimental times and sample sizes: at typical experimental
time, the elasticity length is more than eight orders of
magnitude larger than the typical experimental length. In
this context, we note that the temperature and magnitude of
the anomalies of thermodynamic properties seen at Tg are
sensitive to cooling rates and observation times. Were the
thermodynamic parameters measured at higher cooling rates
and shorter experimental times, they would show the anomalies
at temperatures that correspond to relaxation time τ2. We also
note that the thermodynamic anomalies seen at Tg have real
thermodynamic meaning only at T0, which, as discussed above,
can be reached only for the infinite system.

It therefore follows from our discussion that liquids on
cooling present a unique case when the thermodynamic limit
for the phase transition is not reached for any macroscopic
size of the system. Furthermore, system size itself defines
the temperature and existence of the second crossover from
a ‘liquid-like’ to ‘solid-like’ behaviour. In this sense,
solidification of a liquid is dramatically different from
behaviour in crystals, where the thermodynamic limit, for
practical purposes, is reached for a sufficiently large (106)
number of atoms, whereas finite size effects come into place
at the nanoscale only.

Therefore we conclude that del plays the role of the
order parameter for the glass transition, albeit with unusual
properties: in a finite system, del = L marks the dynamic
crossover without a true thermodynamic transition, whereas
del = L corresponds to a true thermodynamic transition in the
infinite ‘thermodynamic’ liquid (see figure 4).

8. Comment on liquid’s fragility

Experimentally, various liquids show different curvatures of
ln(τ ) as a function of Tg/T , or different degrees of deviation
from the Arrhenius relaxation ln(τ ) ∝ 1/T [25]. This diversity
can be modelled by different parameters A and T0 in the VFT
equation. The degree of deviation from the Arrhenius law was
proposed to be called liquid ‘fragility’, the larger the deviation,
the larger the fragility [26]. Liquids with small and large
deviations from the Arrhenius law were further proposed to be
called ‘strong’ and ‘fragile’, respectively. The physical origin
of fragility has remained an open problem since, adding to
controversy in the field [2].

The physical origin of fragility must be related to the
origin of the VFT law: if a certain process is responsible for
the deviation from the Arrhenius relaxation in the form of the
VFT law, the strength of this process sets fragility. In our
picture, the origin of the VFT law is the increase of del on
lowering the temperature. The origin of fragility can similarly
discussed in this approach. According to equation (3), as long
as at high temperature del < L, lowering the temperature
increases V , resulting in a fragile behaviour. If, on the other
hand, d � L at high temperature already, further decrease
of temperature has a weaker effect on V , giving weak super-
Arrhenius behaviour. Experimentally, for many systems the
studied range of temperatures varies from about 2Tg and Tg [8],
hence we consider the increase of del from high temperature
Th = 2Tg to Tg. Take, for example, two systems on the stronger
side of fragility plots, BeF2 and SiO2. From the experimental
values of Vh/kTg (Vh is the activation barrier at the highest
measured temperature), we find Vh/kTh = 24 and 19.6 for
BeF2 and SiO2, respectively [27]. Using τ = τ0 exp(V/kT ) in
equation (1), we find del = a exp(V/kT ), giving del = 2.6 m
and 33 mm at Th for the two systems. As discussed above,
typical values of L used in the experiments are 1–10 mm,
hence our picture correctly predicts that these systems should
be on the strong end of fragility plots. For two fragile systems,
toluene and propylene carbonate, Vh/kTh = 3.34 and 5.75,
respectively, giving del of 28 and 314 Å, respectively. This
is much smaller than L, hence our picture predicts that these
systems should be fragile, as is seen experimentally.
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In this picture, strong systems should have large intrinsic
(i.e. unrelated to the increase of del) activation barriers, so
that del � L already at high temperature. For example,
covalent liquids have the large activation energy needed to
break strong covalent bonds, and are therefore expected to be
on the stronger end of fragility plots. Fragile systems, on the
other hand, should have smaller intrinsic activation barriers, so
that del � L at high temperature. This is characteristic of, for
example, ionic liquids, in which local rearrangement processes
are not accompanied by the change of electronic structure to
the same extent as in covalent liquids, and hence cost less
energy. This picture therefore predicts covalent and ionic
liquids to be generally on the strong and fragile ends of fragility
plots, respectively, consistent with experiments [26]. There
may be other factors that define intrinsic activation barriers.
Regardless of these, however, the physical origin of fragility in
our picture is the increase of del on lowering the temperature.

One interesting prediction from this picture is that liquids
which appear to be strong on the fragility plots (e.g. SiO2,
GeO2) can show signs of increased fragility when the
measurements are extended to higher temperature so that
del decreases below L (for some of the strong systems,
high-temperature data are absent in fragility plots [26],
which is probably related to measurement difficulties at high
temperatures). In this picture, all liquids should show
deviations from purely Arrhenius relaxation if the temperature
range is large enough to include the case del � L.

In this sense, the difference between strong and fragile
liquids is not qualitative, or fundamental, from the physical
point of view. Rather, the difference is quantitative, in that
depending on the relative weight of the first and second term in
equation (3) a liquid can show a larger or a smaller deviation
from the Arrhenius behaviour in the temperature range where
del < L.

It should be noted that the increase of V due to the increase
of del is not the only possible mechanism of super-Arrhenius
behaviour and fragility. For example, in some systems V can
noticeably increase due to density increase on lowering the
temperature. The corresponding contribution to the increase
of V depends on temperature dependence of density. Note that
whereas system size does not affect the density-related increase
of V it affects the increase of V due to the increase of del. In
the next section, we discuss this effect in more detail.

9. Experimental results for the system size effect

The discussed picture of the glass transition makes a specific
prediction regarding the effect of system size on viscosity. It
follows from the above discussion that V , and hence apparent
viscosity, is not a local property, but is governed by the elastic
interaction between local regions within range del. When del

crosses system size at low temperature, viscosity is defined by
interactions between all local regions in the system. According
to equation (3), V and η are independent of system size for
del < L, but increase with L when del � L. Hence an unusual
prediction, the increase of viscosity with system size, emerges
from this picture. Below we test this prediction experimentally.

Table 2. Viscosities η1 and η2 measured in containers of length
L1 = 10 mm and L2 = 50 mm. The calculated values of del at five
temperatures are also shown.

T (K) del (mm) η1 (Pa s) η2 (Pa s)

306 0.003 8.1 ± 0.5 8.2 ± 0.5
293 0.01 26 ± 2 25.5 ± 2
279 0.08 210 ± 15 215 ± 15
254 45 (0.9 ± 0.1) × 105 (1.2 ± 0.1) × 105

248 110 (2.1 ± 0.2) × 105 (2.9 ± 0.2) × 105

We have chosen honey as an appropriate liquid for our
experiment since its elasticity length crosses system sizes in a
convenient temperature range (see below). We have measured
viscosity by measuring the falling time of a steel ball using
the Stokes equation with the end and wall correction, η =
2gr 2

b (ρb − ρl)W/9vE , where W = 1 − 2.104(rb/rc) +
2.09(rb/rc)

3 − 0.95(rb/rc)
5 and E = 1 + 3.3(rb/h). Here,

v is the measured falling velocity, g is the acceleration due to
gravity, ρb and ρl are the densities of the ball (7.7 g cm−3)
and the liquid (1.45 g cm−3), rb and rc are the radii of the
ball (2rb = 1.55 mm) and container, respectively, and h is
the container height taken to be the falling distance. We have
measured η at 306, 293, 279, 254, and 248 K in two different
containers, of L1 = 10 mm in diameter and L1 = 10 mm
in height, and L2 = 50 mm in diameter and L2 = 50 mm
in height. The corresponding values of η1 and η2 are shown
in table 2. Also shown are the values of del calculated from
equation (1), where τ is calculated from the Maxwell relation
η = τG∞, G∞ ≈ 4 GPa.

Consistent with the theoretical prediction, we find that for
del < L, η1 = η2. On the other hand, for del � L, we
observe that η1 < η2: for del = 110 mm, the viscosity is about
40% larger in the larger container as compared to the smaller
one. The observed increase of viscosity with system size is an
interesting unexpected effect. It would certainly be interesting
to study it in other systems. Since no other theory predicts that
viscosity should increase with system size, we believe that this
specific result lends good support to the elastic picture of glass
transition that we discussed.

We conclude this section by noting that the increase of V
can have a contribution related to the increase of density. This
contribution comes in addition to the increase of del, and does
not depend on system size. Hence the effect of system size on
viscosity can be reduced depending on the relative weight of
two contributions that arise from the increase of del and density.

10. Summary

In summary, we have introduced the concept of liquid elasticity
length del, and discussed that when del becomes equal to
the medium-range length and system size on lowering the
temperature two universal dynamic crossovers take place.
From a physical point of view, an interesting conclusion that
follows is that the most important changes in the dynamics of a
disordered system are defined by its fundamental lengths only.
The discussion of the second dynamic crossover is directly
related to the old debate between the proponents of ‘kinetic’
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and ‘thermodynamic’ views of the glass transition, and we have
discussed that the glass transition is a kinetic process for any
finite system, and is a thermodynamic transition for the infinite
system. Finally, we have experimentally tested the prediction
of our theory that apparent viscosity increases with the size of
a macroscopic system.
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